Coverage for src/CSET/operators/read.py: 90%
357 statements
« prev ^ index » next coverage.py v7.10.6, created at 2025-09-05 21:08 +0000
« prev ^ index » next coverage.py v7.10.6, created at 2025-09-05 21:08 +0000
1# © Crown copyright, Met Office (2022-2025) and CSET contributors.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
15"""Operators for reading various types of files from disk."""
17import ast
18import datetime
19import functools
20import glob
21import itertools
22import logging
23from pathlib import Path
24from typing import Literal
26import iris
27import iris.coord_systems
28import iris.coords
29import iris.cube
30import iris.exceptions
31import iris.util
32import numpy as np
33from iris.analysis.cartography import rotate_pole, rotate_winds
35from CSET._common import iter_maybe
36from CSET.operators._stash_to_lfric import STASH_TO_LFRIC
37from CSET.operators._utils import get_cube_yxcoordname
40class NoDataError(FileNotFoundError):
41 """Error that no data has been loaded."""
44def read_cube(
45 file_paths: list[str] | str,
46 constraint: iris.Constraint = None,
47 model_names: list[str] | str | None = None,
48 subarea_type: str = None,
49 subarea_extent: list[float] = None,
50 **kwargs,
51) -> iris.cube.Cube:
52 """Read a single cube from files.
54 Read operator that takes a path string (can include shell-style glob
55 patterns), and loads the cube matching the constraint. If any paths point to
56 directory, all the files contained within are loaded.
58 Ensemble data can also be loaded. If it has a realization coordinate
59 already, it will be directly used. If not, it will have its member number
60 guessed from the filename, based on one of several common patterns. For
61 example the pattern *emXX*, where XX is the realization.
63 Deterministic data will be loaded with a realization of 0, allowing it to be
64 processed in the same way as ensemble data.
66 Arguments
67 ---------
68 file_paths: str | list[str]
69 Path or paths to where .pp/.nc files are located
70 constraint: iris.Constraint | iris.ConstraintCombination, optional
71 Constraints to filter data by. Defaults to unconstrained.
72 model_names: str | list[str], optional
73 Names of the models that correspond to respective paths in file_paths.
74 subarea_type: "gridcells" | "modelrelative" | "realworld", optional
75 Whether to constrain data by model relative coordinates or real world
76 coordinates.
77 subarea_extent: list, optional
78 List of coordinates to constraint data by, in order lower latitude,
79 upper latitude, lower longitude, upper longitude.
81 Returns
82 -------
83 cubes: iris.cube.Cube
84 Cube loaded
86 Raises
87 ------
88 FileNotFoundError
89 If the provided path does not exist
90 ValueError
91 If the constraint doesn't produce a single cube.
92 """
93 cubes = read_cubes(
94 file_paths=file_paths,
95 constraint=constraint,
96 model_names=model_names,
97 subarea_type=subarea_type,
98 subarea_extent=subarea_extent,
99 )
100 # Check filtered cubes is a CubeList containing one cube.
101 if len(cubes) == 1:
102 return cubes[0]
103 else:
104 raise ValueError(
105 f"Constraint doesn't produce single cube: {constraint}\n{cubes}"
106 )
109def read_cubes(
110 file_paths: list[str] | str,
111 constraint: iris.Constraint | None = None,
112 model_names: str | list[str] | None = None,
113 subarea_type: str = None,
114 subarea_extent: list = None,
115 **kwargs,
116) -> iris.cube.CubeList:
117 """Read cubes from files.
119 Read operator that takes a path string (can include shell-style glob
120 patterns), and loads the cubes matching the constraint. If any paths point
121 to directory, all the files contained within are loaded.
123 Ensemble data can also be loaded. If it has a realization coordinate
124 already, it will be directly used. If not, it will have its member number
125 guessed from the filename, based on one of several common patterns. For
126 example the pattern *emXX*, where XX is the realization.
128 Deterministic data will be loaded with a realization of 0, allowing it to be
129 processed in the same way as ensemble data.
131 Data output by XIOS (such as LFRic) has its per-file metadata removed so
132 that the cubes merge across files.
134 Arguments
135 ---------
136 file_paths: str | list[str]
137 Path or paths to where .pp/.nc files are located. Can include globs.
138 constraint: iris.Constraint | iris.ConstraintCombination, optional
139 Constraints to filter data by. Defaults to unconstrained.
140 model_names: str | list[str], optional
141 Names of the models that correspond to respective paths in file_paths.
142 subarea_type: str, optional
143 Whether to constrain data by model relative coordinates or real world
144 coordinates.
145 subarea_extent: list[float], optional
146 List of coordinates to constraint data by, in order lower latitude,
147 upper latitude, lower longitude, upper longitude.
149 Returns
150 -------
151 cubes: iris.cube.CubeList
152 Cubes loaded after being merged and concatenated.
154 Raises
155 ------
156 FileNotFoundError
157 If the provided path does not exist
158 """
159 # Get iterable of paths. Each path corresponds to 1 model.
160 paths = iter_maybe(file_paths)
161 model_names = iter_maybe(model_names)
163 # Check we have appropriate number of model names.
164 if model_names != (None,) and len(model_names) != len(paths):
165 raise ValueError(
166 f"The number of model names ({len(model_names)}) should equal "
167 f"the number of paths given ({len(paths)})."
168 )
170 # Load the data for each model into a CubeList per model.
171 model_cubes = (
172 _load_model(path, name, constraint)
173 for path, name in itertools.zip_longest(paths, model_names, fillvalue=None)
174 )
176 # Split out first model's cubes and mark it as the base for comparisons.
177 cubes = next(model_cubes)
178 for cube in cubes:
179 # Use 1 to indicate True, as booleans can't be saved in NetCDF attributes.
180 cube.attributes["cset_comparison_base"] = 1
182 # Load the rest of the models.
183 cubes.extend(itertools.chain.from_iterable(model_cubes))
185 # Unify time units so different case studies can merge.
186 iris.util.unify_time_units(cubes)
188 # Select sub region.
189 cubes = _cutout_cubes(cubes, subarea_type, subarea_extent)
190 # Merge and concatenate cubes now metadata has been fixed.
191 cubes = cubes.merge()
192 cubes = cubes.concatenate()
194 # Ensure dimension coordinates are bounded.
195 for cube in cubes:
196 for dim_coord in cube.coords(dim_coords=True):
197 # Iris can't guess the bounds of a scalar coordinate.
198 if not dim_coord.has_bounds() and dim_coord.shape[0] > 1:
199 dim_coord.guess_bounds()
201 logging.info("Loaded cubes: %s", cubes)
202 if len(cubes) == 0:
203 raise NoDataError("No cubes loaded, check your constraints!")
204 return cubes
207def _load_model(
208 paths: str | list[str],
209 model_name: str | None,
210 constraint: iris.Constraint | None,
211) -> iris.cube.CubeList:
212 """Load a single model's data into a CubeList."""
213 input_files = _check_input_files(paths)
214 # If unset, a constraint of None lets everything be loaded.
215 logging.debug("Constraint: %s", constraint)
216 cubes = iris.load(
217 input_files, constraint, callback=_create_callback(is_ensemble=False)
218 )
219 # Make the UM's winds consistent with LFRic.
220 _fix_um_winds(cubes)
222 # Reload with ensemble handling if needed.
223 if _is_ensemble(cubes):
224 cubes = iris.load(
225 input_files, constraint, callback=_create_callback(is_ensemble=True)
226 )
228 # Add model_name attribute to each cube to make it available at any further
229 # step without needing to pass it as function parameter.
230 if model_name is not None:
231 for cube in cubes:
232 cube.attributes["model_name"] = model_name
233 return cubes
236def _check_input_files(input_paths: str | list[str]) -> list[Path]:
237 """Get an iterable of files to load, and check that they all exist.
239 Arguments
240 ---------
241 input_paths: list[str]
242 List of paths to input files or directories. The path may itself contain
243 glob patterns, but unlike in shells it will match directly first.
245 Returns
246 -------
247 list[Path]
248 A list of files to load.
250 Raises
251 ------
252 FileNotFoundError:
253 If the provided arguments don't resolve to at least one existing file.
254 """
255 files = []
256 for raw_filename in iter_maybe(input_paths):
257 # Match glob-like files first, if they exist.
258 raw_path = Path(raw_filename)
259 if raw_path.is_file():
260 files.append(raw_path)
261 else:
262 for input_path in glob.glob(raw_filename):
263 # Convert string paths into Path objects.
264 input_path = Path(input_path)
265 # Get the list of files in the directory, or use it directly.
266 if input_path.is_dir():
267 logging.debug("Checking directory '%s' for files", input_path)
268 files.extend(p for p in input_path.iterdir() if p.is_file())
269 else:
270 files.append(input_path)
272 files.sort()
273 logging.info("Loading files:\n%s", "\n".join(str(path) for path in files))
274 if len(files) == 0:
275 raise FileNotFoundError(f"No files found for {input_paths}")
276 return files
279def _cutout_cubes(
280 cubes: iris.cube.CubeList,
281 subarea_type: Literal["gridcells", "realworld", "modelrelative"] | None,
282 subarea_extent: list[float, float, float, float],
283):
284 """Cut out a subarea from a CubeList."""
285 if subarea_type is None:
286 logging.debug("Subarea selection is disabled.")
287 return cubes
289 # If selected, cutout according to number of grid cells to trim from each edge.
290 cutout_cubes = iris.cube.CubeList()
291 # Find spatial coordinates
292 for cube in cubes:
293 # Find dimension coordinates.
294 lat_name, lon_name = get_cube_yxcoordname(cube)
296 # Compute cutout based on number of cells to trim from edges.
297 if subarea_type == "gridcells":
298 logging.debug(
299 "User requested LowerTrim: %s LeftTrim: %s UpperTrim: %s RightTrim: %s",
300 subarea_extent[0],
301 subarea_extent[1],
302 subarea_extent[2],
303 subarea_extent[3],
304 )
305 lat_points = np.sort(cube.coord(lat_name).points)
306 lon_points = np.sort(cube.coord(lon_name).points)
307 # Define cutout region using user provided cell points.
308 lats = [lat_points[subarea_extent[0]], lat_points[-subarea_extent[2] - 1]]
309 lons = [lon_points[subarea_extent[1]], lon_points[-subarea_extent[3] - 1]]
311 # Compute cutout based on specified coordinate values.
312 elif subarea_type == "realworld" or subarea_type == "modelrelative":
313 # If not gridcells, cutout by requested geographic area,
314 logging.debug(
315 "User requested LLat: %s ULat: %s LLon: %s ULon: %s",
316 subarea_extent[0],
317 subarea_extent[1],
318 subarea_extent[2],
319 subarea_extent[3],
320 )
321 # Define cutout region using user provided coordinates.
322 lats = np.array(subarea_extent[0:2])
323 lons = np.array(subarea_extent[2:4])
324 # Ensure cutout longitudes are within +/- 180.0 bounds.
325 while lons[0] < -180.0:
326 lons += 360.0
327 while lons[1] > 180.0:
328 lons -= 360.0
329 # If the coordinate system is rotated we convert coordinates into
330 # model-relative coordinates to extract the appropriate cutout.
331 coord_system = cube.coord(lat_name).coord_system
332 if subarea_type == "realworld" and isinstance(
333 coord_system, iris.coord_systems.RotatedGeogCS
334 ):
335 lons, lats = rotate_pole(
336 lons,
337 lats,
338 pole_lon=coord_system.grid_north_pole_longitude,
339 pole_lat=coord_system.grid_north_pole_latitude,
340 )
341 else:
342 raise ValueError("Unknown subarea_type:", subarea_type)
344 # Do cutout and add to cutout_cubes.
345 intersection_args = {lat_name: lats, lon_name: lons}
346 logging.debug("Cutting out coords: %s", intersection_args)
347 try:
348 cutout_cubes.append(cube.intersection(**intersection_args))
349 except IndexError as err:
350 raise ValueError(
351 "Region cutout error. Check and update SUBAREA_EXTENT."
352 "Cutout region requested should be contained within data area. "
353 "Also check if cutout region requested is smaller than input grid spacing."
354 ) from err
356 return cutout_cubes
359def _is_ensemble(cubelist: iris.cube.CubeList) -> bool:
360 """Test if a CubeList is likely to be ensemble data.
362 If cubes either have a realization dimension, or there are multiple files
363 for the same time-step, we can assume it is ensemble data.
364 """
365 unique_cubes = set()
366 for cube in cubelist:
367 # Ignore realization of 0, as that is given to deterministic data.
368 if cube.coords("realization") and any(cube.coord("realization").points != 0):
369 return True
370 # Compare XML representation of cube structure check for duplicates.
371 cube_content = cube.xml()
372 if cube_content in unique_cubes:
373 logging.info("Ensemble data loaded.")
374 return True
375 else:
376 unique_cubes.add(cube_content)
377 logging.info("Deterministic data loaded.")
378 return False
381def _create_callback(is_ensemble: bool) -> callable:
382 """Compose together the needed callbacks into a single function."""
384 def callback(cube: iris.cube.Cube, field, filename: str):
385 if is_ensemble:
386 _ensemble_callback(cube, field, filename)
387 else:
388 _deterministic_callback(cube, field, filename)
390 _um_normalise_callback(cube, field, filename)
391 _lfric_normalise_callback(cube, field, filename)
392 _lfric_time_coord_fix_callback(cube, field, filename)
393 _normalise_var0_varname(cube)
394 _fix_spatial_coords_callback(cube)
395 _fix_pressure_coord_callback(cube)
396 _fix_um_radtime(cube)
397 _fix_cell_methods(cube)
398 _convert_cube_units_callback(cube)
399 _grid_longitude_fix_callback(cube)
400 _fix_lfric_cloud_base_altitude(cube)
401 _lfric_time_callback(cube)
402 _lfric_forecast_period_standard_name_callback(cube)
404 return callback
407def _ensemble_callback(cube, field, filename):
408 """Add a realization coordinate to a cube.
410 Uses the filename to add an ensemble member ('realization') to each cube.
411 Assumes data is formatted enuk_um_0XX/enukaa_pd0HH.pp where XX is the
412 ensemble member.
414 Arguments
415 ---------
416 cube: Cube
417 ensemble member cube
418 field
419 Raw data variable, unused.
420 filename: str
421 filename of ensemble member data
422 """
423 if not cube.coords("realization"):
424 if "em" in filename:
425 # Assuming format is *emXX*
426 loc = filename.find("em") + 2
427 member = np.int32(filename[loc : loc + 2])
428 else:
429 # Assuming raw fields files format is enuk_um_0XX/enukaa_pd0HH
430 member = np.int32(filename[-15:-13])
432 cube.add_aux_coord(iris.coords.AuxCoord(member, standard_name="realization"))
435def _deterministic_callback(cube, field, filename):
436 """Give deterministic cubes a realization of 0.
438 This means they can be handled in the same way as ensembles through the rest
439 of the code.
440 """
441 # Only add if realization coordinate does not exist.
442 if not cube.coords("realization"):
443 cube.add_aux_coord(
444 iris.coords.AuxCoord(np.int32(0), standard_name="realization", units="1")
445 )
448@functools.lru_cache(None)
449def _warn_once(msg):
450 """Print a warning message, skipping recent duplicates."""
451 logging.warning(msg)
454def _um_normalise_callback(cube: iris.cube.Cube, field, filename):
455 """Normalise UM STASH variable long names to LFRic variable names.
457 Note standard names will remain associated with cubes where different.
458 Long name will be used consistently in output filename and titles.
459 """
460 # Convert STASH to LFRic variable name
461 if "STASH" in cube.attributes:
462 stash = cube.attributes["STASH"]
463 try:
464 (name, grid) = STASH_TO_LFRIC[str(stash)]
465 cube.long_name = name
466 except KeyError:
467 # Don't change cubes with unknown stash codes.
468 _warn_once(
469 f"Unknown STASH code: {stash}. Please check file stash_to_lfric.py to update."
470 )
473def _lfric_normalise_callback(cube: iris.cube.Cube, field, filename):
474 """Normalise attributes that prevents LFRic cube from merging.
476 The uuid and timeStamp relate to the output file, as saved by XIOS, and has
477 no relation to the data contained. These attributes are removed.
479 The um_stash_source is a list of STASH codes for when an LFRic field maps to
480 multiple UM fields, however it can be encoded in any order. This attribute
481 is sorted to prevent this. This attribute is only present in LFRic data that
482 has been converted to look like UM data.
483 """
484 # Remove unwanted attributes.
485 cube.attributes.pop("timeStamp", None)
486 cube.attributes.pop("uuid", None)
487 cube.attributes.pop("name", None)
489 # Sort STASH code list.
490 stash_list = cube.attributes.get("um_stash_source")
491 if stash_list:
492 # Parse the string as a list, sort, then re-encode as a string.
493 cube.attributes["um_stash_source"] = str(sorted(ast.literal_eval(stash_list)))
496def _lfric_time_coord_fix_callback(cube: iris.cube.Cube, field, filename):
497 """Ensure the time coordinate is a DimCoord rather than an AuxCoord.
499 The coordinate is converted and replaced if not. SLAMed LFRic data has this
500 issue, though the coordinate satisfies all the properties for a DimCoord.
501 Scalar time values are left as AuxCoords.
502 """
503 # This issue seems to come from iris's handling of NetCDF files where time
504 # always ends up as an AuxCoord.
505 if cube.coords("time"):
506 time_coord = cube.coord("time")
507 if (
508 not isinstance(time_coord, iris.coords.DimCoord)
509 and len(cube.coord_dims(time_coord)) == 1
510 ):
511 iris.util.promote_aux_coord_to_dim_coord(cube, time_coord)
513 # Force single-valued coordinates to be scalar coordinates.
514 return iris.util.squeeze(cube)
517def _grid_longitude_fix_callback(cube: iris.cube.Cube):
518 """Check grid_longitude coordinates are in the range -180 deg to 180 deg.
520 This is necessary if comparing two models with different conventions --
521 for example, models where the prime meridian is defined as 0 deg or
522 360 deg. If not in the range -180 deg to 180 deg, we wrap the grid_longitude
523 so that it falls in this range. Checks are for near-180 bounds given
524 model data bounds may not extend exactly to 0. or 360.
525 Input cubes on non-rotated grid coordinates are not impacted.
526 """
527 import CSET.operators._utils as utils
529 try:
530 y, x = utils.get_cube_yxcoordname(cube)
531 except ValueError:
532 # Don't modify non-spatial cubes.
533 return cube
535 long_coord = cube.coord(x)
536 # Wrap longitudes if rotated pole coordinates
537 coord_system = long_coord.coord_system
538 if x == "grid_longitude" and isinstance(
539 coord_system, iris.coord_systems.RotatedGeogCS
540 ):
541 long_points = long_coord.points.copy()
542 long_centre = np.median(long_points)
543 while long_centre < -175.0:
544 long_centre += 360.0
545 long_points += 360.0
546 while long_centre >= 175.0:
547 long_centre -= 360.0
548 long_points -= 360.0
549 long_coord.points = long_points
551 # Update coord bounds to be consistent with wrapping.
552 if long_coord.has_bounds() and np.size(long_coord) > 1: 552 ↛ 553line 552 didn't jump to line 553 because the condition on line 552 was never true
553 long_coord.bounds = None
554 long_coord.guess_bounds()
556 return cube
559def _fix_spatial_coords_callback(cube: iris.cube.Cube):
560 """Check latitude and longitude coordinates name.
562 This is necessary as some models define their grid as on rotated
563 'grid_latitude' and 'grid_longitude' coordinates while others define
564 the grid on non-rotated 'latitude' and 'longitude'.
565 Cube dimensions need to be made consistent to avoid recipe failures,
566 particularly where comparing multiple input models with differing spatial
567 coordinates.
568 """
569 import CSET.operators._utils as utils
571 # Check if cube is spatial.
572 if not utils.is_spatialdim(cube):
573 # Don't modify non-spatial cubes.
574 return cube
576 # Get spatial coords and dimension index.
577 y_name, x_name = utils.get_cube_yxcoordname(cube)
578 ny = utils.get_cube_coordindex(cube, y_name)
579 nx = utils.get_cube_coordindex(cube, x_name)
581 # Translate [grid_latitude, grid_longitude] to an unrotated 1-d DimCoord
582 # [latitude, longitude] for instances where rotated_pole=90.0
583 if "grid_latitude" in [coord.name() for coord in cube.coords(dim_coords=True)]:
584 coord_system = cube.coord("grid_latitude").coord_system
585 pole_lat = coord_system.grid_north_pole_latitude
586 if pole_lat == 90.0: 586 ↛ 587line 586 didn't jump to line 587 because the condition on line 586 was never true
587 lats = cube.coord("grid_latitude").points
588 lons = cube.coord("grid_longitude").points
590 cube.remove_coord("grid_latitude")
591 cube.add_dim_coord(
592 iris.coords.DimCoord(
593 lats,
594 standard_name="latitude",
595 var_name="latitude",
596 units="degrees",
597 coord_system=iris.coord_systems.GeogCS(6371229.0),
598 circular=True,
599 ),
600 ny,
601 )
602 y_name = "latitude"
603 cube.remove_coord("grid_longitude")
604 cube.add_dim_coord(
605 iris.coords.DimCoord(
606 lons,
607 standard_name="longitude",
608 var_name="longitude",
609 units="degrees",
610 coord_system=iris.coord_systems.GeogCS(6371229.0),
611 circular=True,
612 ),
613 nx,
614 )
615 x_name = "longitude"
617 # Create additional AuxCoord [grid_latitude, grid_longitude] with
618 # rotated pole attributes for cases with [lat, lon] inputs
619 if y_name in ["latitude"] and cube.coord(y_name).units in [
620 "degrees",
621 "degrees_north",
622 "degrees_south",
623 ]:
624 # Add grid_latitude AuxCoord
625 if "grid_latitude" not in [ 625 ↛ 638line 625 didn't jump to line 638 because the condition on line 625 was always true
626 coord.name() for coord in cube.coords(dim_coords=False)
627 ]:
628 cube.add_aux_coord(
629 iris.coords.AuxCoord(
630 cube.coord(y_name).points,
631 var_name="grid_latitude",
632 units="degrees",
633 ),
634 ny,
635 )
636 # Ensure input latitude DimCoord has CoordSystem
637 # This attribute is sometimes lost on iris.save
638 if not cube.coord(y_name).coord_system:
639 cube.coord(y_name).coord_system = iris.coord_systems.GeogCS(6371229.0)
641 if x_name in ["longitude"] and cube.coord(x_name).units in [
642 "degrees",
643 "degrees_west",
644 "degrees_east",
645 ]:
646 # Add grid_longitude AuxCoord
647 if "grid_longitude" not in [ 647 ↛ 661line 647 didn't jump to line 661 because the condition on line 647 was always true
648 coord.name() for coord in cube.coords(dim_coords=False)
649 ]:
650 cube.add_aux_coord(
651 iris.coords.AuxCoord(
652 cube.coord(x_name).points,
653 var_name="grid_longitude",
654 units="degrees",
655 ),
656 nx,
657 )
659 # Ensure input longitude DimCoord has CoordSystem
660 # This attribute is sometimes lost on iris.save
661 if not cube.coord(x_name).coord_system:
662 cube.coord(x_name).coord_system = iris.coord_systems.GeogCS(6371229.0)
665def _fix_pressure_coord_callback(cube: iris.cube.Cube):
666 """Rename pressure coordinate to "pressure" if it exists and ensure hPa units.
668 This problem was raised because the AIFS model data from ECMWF
669 defines the pressure coordinate with the name "pressure_level" rather
670 than compliant CF coordinate names.
672 Additionally, set the units of pressure to be hPa to be consistent with the UM,
673 and approach the coordinates in a unified way.
674 """
675 for coord in cube.dim_coords:
676 if coord.name() in ["pressure_level", "pressure_levels"]:
677 coord.rename("pressure")
679 if coord.name() == "pressure":
680 if str(cube.coord("pressure").units) != "hPa":
681 cube.coord("pressure").convert_units("hPa")
684def _fix_um_radtime(cube: iris.cube.Cube):
685 """Move radiation diagnostics from timestamps which are output N minutes or seconds past every hour.
687 This callback does not have any effect for output diagnostics with
688 timestamps exactly 00 or 30 minutes past the hour. Only radiation
689 diagnostics are checked.
690 Note this callback does not interpolate the data in time, only adjust
691 timestamps to sit on the hour to enable time-to-time difference plotting
692 with models which may output radiation data on the hour.
693 """
694 try:
695 if cube.attributes["STASH"] in [
696 "m01s01i207",
697 "m01s01i208",
698 "m01s02i205",
699 "m01s02i201",
700 "m01s01i207",
701 "m01s02i207",
702 "m01s01i235",
703 ]:
704 time_coord = cube.coord("time")
706 # Convert time points to datetime objects
707 time_unit = time_coord.units
708 time_points = time_unit.num2date(time_coord.points)
709 # Skip if times don't need fixing.
710 if time_points[0].minute == 0 and time_points[0].second == 0:
711 return
712 if time_points[0].minute == 30 and time_points[0].second == 0: 712 ↛ 713line 712 didn't jump to line 713 because the condition on line 712 was never true
713 return
715 # Subtract time difference from the hour from each time point
716 n_minute = time_points[0].minute
717 n_second = time_points[0].second
718 # If times closer to next hour, compute difference to add on to following hour
719 if n_minute > 30:
720 n_minute = n_minute - 60
721 # Compute new diagnostic time stamp
722 new_time_points = (
723 time_points
724 - datetime.timedelta(minutes=n_minute)
725 - datetime.timedelta(seconds=n_second)
726 )
728 # Convert back to numeric values using the original time unit.
729 new_time_values = time_unit.date2num(new_time_points)
731 # Replace the time coordinate with updated values.
732 time_coord.points = new_time_values
734 # Recompute forecast_period with corrected values.
735 if cube.coord("forecast_period"): 735 ↛ exitline 735 didn't return from function '_fix_um_radtime' because the condition on line 735 was always true
736 fcst_prd_points = cube.coord("forecast_period").points
737 new_fcst_points = (
738 time_unit.num2date(fcst_prd_points)
739 - datetime.timedelta(minutes=n_minute)
740 - datetime.timedelta(seconds=n_second)
741 )
742 cube.coord("forecast_period").points = time_unit.date2num(
743 new_fcst_points
744 )
745 except KeyError:
746 pass
749def _fix_cell_methods(cube: iris.cube.Cube):
750 """To fix the assumed cell_methods in accumulation STASH from UM.
752 Lightning (m01s21i104), rainfall amount (m01s04i201, m01s05i201) and snowfall amount
753 (m01s04i202, m01s05i202) in UM is being output as a time accumulation,
754 over each hour (TAcc1hr), but input cubes show cell_methods as "mean".
755 For UM and LFRic inputs to be compatible, we assume accumulated cell_methods are
756 "sum". This callback changes "mean" cube attribute cell_method to "sum",
757 enabling the cell_method constraint on reading to select correct input.
758 """
759 # Shift "mean" cell_method to "sum" for selected UM inputs.
760 if cube.attributes.get("STASH") in [
761 "m01s21i104",
762 "m01s04i201",
763 "m01s04i202",
764 "m01s05i201",
765 "m01s05i202",
766 ]:
767 # Check if input cell_method contains "mean" time-processing.
768 if set(cm.method for cm in cube.cell_methods) == {"mean"}: 768 ↛ exitline 768 didn't return from function '_fix_cell_methods' because the condition on line 768 was always true
769 # Retrieve interval and any comment information.
770 for cell_method in cube.cell_methods:
771 interval_str = cell_method.intervals
772 comment_str = cell_method.comments
774 # Remove input aggregation method.
775 cube.cell_methods = ()
777 # Replace "mean" with "sum" cell_method to indicate aggregation.
778 cube.add_cell_method(
779 iris.coords.CellMethod(
780 method="sum",
781 coords="time",
782 intervals=interval_str,
783 comments=comment_str,
784 )
785 )
788def _convert_cube_units_callback(cube: iris.cube.Cube):
789 """Adjust diagnostic units for specific variables.
791 Some precipitation diagnostics are output with unit kg m-2 s-1 and are
792 converted here to mm hr-1.
794 Visibility diagnostics are converted here from m to km to improve output
795 formatting.
796 """
797 # Convert precipitation diagnostic units if required.
798 varnames = filter(None, [cube.long_name, cube.standard_name, cube.var_name])
799 if any("surface_microphysical" in name for name in varnames):
800 if cube.units == "kg m-2 s-1":
801 logging.debug(
802 "Converting precipitation rate units from kg m-2 s-1 to mm hr-1"
803 )
804 # Convert from kg m-2 s-1 to mm s-1 assuming 1kg water = 1l water = 1dm^3 water.
805 # This is a 1:1 conversion, so we just change the units.
806 cube.units = "mm s-1"
807 # Convert the units to per hour.
808 cube.convert_units("mm hr-1")
809 elif cube.units == "kg m-2": 809 ↛ 816line 809 didn't jump to line 816 because the condition on line 809 was always true
810 logging.debug("Converting precipitation amount units from kg m-2 to mm")
811 # Convert from kg m-2 to mm assuming 1kg water = 1l water = 1dm^3 water.
812 # This is a 1:1 conversion, so we just change the units.
813 cube.units = "mm"
815 # Convert visibility diagnostic units if required.
816 varnames = filter(None, [cube.long_name, cube.standard_name, cube.var_name])
817 if any("visibility" in name for name in varnames):
818 if cube.units == "m": 818 ↛ 823line 818 didn't jump to line 823 because the condition on line 818 was always true
819 logging.debug("Converting visibility units m to km.")
820 # Convert the units to km.
821 cube.convert_units("km")
823 return cube
826def _fix_lfric_cloud_base_altitude(cube: iris.cube.Cube):
827 """Mask cloud_base_altitude diagnostic in regions with no cloud."""
828 varnames = filter(None, [cube.long_name, cube.standard_name, cube.var_name])
829 if any("cloud_base_altitude" in name for name in varnames):
830 # Mask cube where set > 144kft to catch default 144.35695538058164
831 cube.data = np.ma.masked_array(cube.data)
832 cube.data[cube.data > 144.0] = np.ma.masked
835def _fix_um_winds(cubes: iris.cube.CubeList):
836 """To make winds from the UM consistent with those from LFRic.
838 Diagnostics of wind are not always consistent between the UM
839 and LFric. Here, winds from the UM are adjusted to make them i
840 consistent with LFRic.
841 """
842 # Check whether we have components of the wind identified by STASH,
843 # (so this will apply only to cubes from the UM), but not the
844 # wind speed and calculate it if it is missing. Note that
845 # this will be biased low in general because the components will mostly
846 # be time averages. For simplicity, we do this only if there is just one
847 # cube of a component. A more complicated approach would be to consider
848 # the cell methods, but it may not be warranted.
849 u_constr = iris.AttributeConstraint(STASH="m01s03i225")
850 v_constr = iris.AttributeConstraint(STASH="m01s03i226")
851 speed_constr = iris.AttributeConstraint(STASH="m01s03i227")
852 try:
853 if cubes.extract(u_constr) and cubes.extract(v_constr): 853 ↛ 854line 853 didn't jump to line 854 because the condition on line 853 was never true
854 if len(cubes.extract(u_constr)) == 1 and not cubes.extract(speed_constr):
855 _add_wind_speed_um(cubes)
856 # Convert winds in the UM to be relative to true east and true north.
857 _convert_wind_true_dirn_um(cubes)
858 except (KeyError, AttributeError):
859 pass
862def _add_wind_speed_um(cubes: iris.cube.CubeList):
863 """Add windspeeds to cubes from the UM."""
864 wspd10 = (
865 cubes.extract_cube(iris.AttributeConstraint(STASH="m01s03i225"))[0] ** 2
866 + cubes.extract_cube(iris.AttributeConstraint(STASH="m01s03i226"))[0] ** 2
867 ) ** 0.5
868 wspd10.attributes["STASH"] = "m01s03i227"
869 wspd10.standard_name = "wind_speed"
870 wspd10.long_name = "wind_speed_at_10m"
871 cubes.append(wspd10)
874def _convert_wind_true_dirn_um(cubes: iris.cube.CubeList):
875 """To convert winds to true directions.
877 Convert from the components relative to the grid to true directions.
878 This functionality only handles the simplest case.
879 """
880 u_grid = cubes.extract_cube(iris.AttributeConstraint(STASH="m01s03i225"))
881 v_grid = cubes.extract_cube(iris.AttributeConstraint(STASH="m01s03i226"))
882 true_u, true_v = rotate_winds(u_grid, v_grid, iris.coord_systems.GeogCS(6371229.0))
883 u_grid.data = true_u.data
884 v_grid.data = true_v.data
887def _normalise_var0_varname(cube: iris.cube.Cube):
888 """Fix varnames for consistency to allow merging.
890 Some model data netCDF sometimes have a coordinate name end in
891 "_0" etc, where duplicate coordinates of same name are defined but
892 with different attributes. This can be inconsistently managed in
893 different model inputs and can cause cubes to fail to merge.
894 """
895 for coord in cube.coords():
896 if coord.var_name and coord.var_name.endswith("_0"):
897 coord.var_name = coord.var_name.removesuffix("_0")
898 if coord.var_name and coord.var_name.endswith("_1"): 898 ↛ 899line 898 didn't jump to line 899 because the condition on line 898 was never true
899 coord.var_name = coord.var_name.removesuffix("_1")
900 if coord.var_name and coord.var_name.endswith("_2"): 900 ↛ 901line 900 didn't jump to line 901 because the condition on line 900 was never true
901 coord.var_name = coord.var_name.removesuffix("_2")
902 if coord.var_name and coord.var_name.endswith("_3"): 902 ↛ 903line 902 didn't jump to line 903 because the condition on line 902 was never true
903 coord.var_name = coord.var_name.removesuffix("_3")
905 if cube.var_name and cube.var_name.endswith("_0"):
906 cube.var_name = cube.var_name.removesuffix("_0")
909def _lfric_time_callback(cube: iris.cube.Cube):
910 """Fix time coordinate metadata if missing dimensions.
912 Some model data does not contain forecast_reference_time or forecast_period as
913 expected coordinates, and so we cannot aggregate over case studies without this
914 metadata. This callback fixes these issues.
916 This callback also ensures all time coordinates are referenced as hours since
917 1970-01-01 00:00:00 for consistency across different model inputs.
919 Notes
920 -----
921 Some parts of the code have been adapted from Paul Earnshaw's scripts.
922 """
923 # Construct forecast_reference time if it doesn't exist.
924 try:
925 tcoord = cube.coord("time")
926 # Set time coordinate to common basis "hours since 1970"
927 try:
928 tcoord.convert_units("hours since 1970-01-01 00:00:00")
929 except ValueError:
930 logging.error("Unrecognised base time unit: {tcoord.units}")
932 if not cube.coords("forecast_reference_time"):
933 try:
934 init_time = datetime.datetime.fromisoformat(
935 tcoord.attributes["time_origin"]
936 )
937 frt_point = tcoord.units.date2num(init_time)
938 frt_coord = iris.coords.AuxCoord(
939 frt_point,
940 units=tcoord.units,
941 standard_name="forecast_reference_time",
942 long_name="forecast_reference_time",
943 )
944 cube.add_aux_coord(frt_coord)
945 except KeyError:
946 logging.warning(
947 "Cannot find forecast_reference_time, but no `time_origin` attribute to construct it from."
948 )
950 # Remove time_origin to allow multiple case studies to merge.
951 tcoord.attributes.pop("time_origin", None)
953 # Construct forecast_period axis (forecast lead time) if it doesn't exist.
954 if not cube.coords("forecast_period"):
955 try:
956 # Create array of forecast lead times.
957 init_coord = cube.coord("forecast_reference_time")
958 init_time_points_in_tcoord_units = tcoord.units.date2num(
959 init_coord.units.num2date(init_coord.points)
960 )
961 lead_times = tcoord.points - init_time_points_in_tcoord_units
963 # Get unit for lead time from time coordinate's unit.
964 # Convert all lead time to hours for consistency between models.
965 if "seconds" in str(tcoord.units): 965 ↛ 966line 965 didn't jump to line 966 because the condition on line 965 was never true
966 lead_times = lead_times / 3600.0
967 units = "hours"
968 elif "hours" in str(tcoord.units): 968 ↛ 971line 968 didn't jump to line 971 because the condition on line 968 was always true
969 units = "hours"
970 else:
971 raise ValueError(f"Unrecognised base time unit: {tcoord.units}")
973 # Create lead time coordinate.
974 lead_time_coord = iris.coords.AuxCoord(
975 lead_times,
976 standard_name="forecast_period",
977 long_name="forecast_period",
978 units=units,
979 )
981 # Associate lead time coordinate with time dimension.
982 cube.add_aux_coord(lead_time_coord, cube.coord_dims("time"))
983 except iris.exceptions.CoordinateNotFoundError:
984 logging.warning(
985 "Cube does not have both time and forecast_reference_time coordinate, so cannot construct forecast_period"
986 )
987 except iris.exceptions.CoordinateNotFoundError:
988 logging.warning("No time coordinate on cube.")
991def _lfric_forecast_period_standard_name_callback(cube: iris.cube.Cube):
992 """Add forecast_period standard name if missing."""
993 try:
994 coord = cube.coord("forecast_period")
995 if not coord.standard_name:
996 coord.standard_name = "forecast_period"
997 except iris.exceptions.CoordinateNotFoundError:
998 pass