Coverage for src / CSET / operators / filters.py: 98%
60 statements
« prev ^ index » next coverage.py v7.13.1, created at 2026-01-02 11:14 +0000
« prev ^ index » next coverage.py v7.13.1, created at 2026-01-02 11:14 +0000
1# © Crown copyright, Met Office (2022-2026) and CSET contributors.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
15"""Operators to perform various kind of filtering."""
17import logging
19import iris
20import iris.cube
21import iris.exceptions
22import numpy as np
24from CSET._common import iter_maybe
27def apply_mask(
28 original_field: iris.cube.Cube,
29 mask: iris.cube.Cube,
30) -> iris.cube.Cube:
31 """Apply a mask to given data as a masked array.
33 Parameters
34 ----------
35 original_field: iris.cube.Cube
36 The field to be masked.
37 mask: iris.cube.Cube
38 The mask being applied to the original field.
40 Returns
41 -------
42 masked_field: iris.cube.Cube
43 A cube of the masked field.
45 Notes
46 -----
47 The mask is first converted to 1s and NaNs before multiplication with
48 the original data.
50 As discussed in generate_mask, you can combine multiple masks in a
51 recipe using other functions before applying the mask to the data.
53 Examples
54 --------
55 >>> land_points_only = apply_mask(temperature, land_mask)
56 """
57 # Ensure mask is only 1s or NaNs.
58 mask.data[mask.data == 0] = np.nan
59 mask.data[~np.isnan(mask.data)] = 1
60 logging.info(
61 "Mask set to 1 or 0s, if addition of multiple masks results"
62 "in values > 1 these are set to 1."
63 )
64 masked_field = original_field.copy()
65 masked_field.data *= mask.data
66 masked_field.attributes["mask"] = f"mask_of_{original_field.name()}"
67 return masked_field
70def filter_cubes(
71 cube: iris.cube.Cube | iris.cube.CubeList,
72 constraint: iris.Constraint,
73 **kwargs,
74) -> iris.cube.Cube:
75 """Filter a CubeList down to a single Cube based on a constraint.
77 Arguments
78 ---------
79 cube: iris.cube.Cube | iris.cube.CubeList
80 Cube(s) to filter
81 constraint: iris.Constraint
82 Constraint to extract
84 Returns
85 -------
86 iris.cube.Cube
88 Raises
89 ------
90 ValueError
91 If the constraint doesn't produce a single cube.
92 """
93 filtered_cubes = cube.extract(constraint)
94 # Return directly if already a cube.
95 if isinstance(filtered_cubes, iris.cube.Cube):
96 return filtered_cubes
97 # Check filtered cubes is a CubeList containing one cube.
98 if isinstance(filtered_cubes, iris.cube.CubeList) and len(filtered_cubes) == 1:
99 return filtered_cubes[0]
100 else:
101 raise ValueError(
102 f"Constraint doesn't produce single cube. Constraint: {constraint}"
103 f"\nSource: {cube}\nResult: {filtered_cubes}"
104 )
107def filter_multiple_cubes(
108 cubes: iris.cube.Cube | iris.cube.CubeList,
109 **kwargs,
110) -> iris.cube.CubeList:
111 """Filter a CubeList on multiple constraints, returning another CubeList.
113 Arguments
114 ---------
115 cube: iris.cube.Cube | iris.cube.CubeList
116 Cube(s) to filter
117 constraint: iris.Constraint
118 Constraint to extract. This must be a named argument. There can be any
119 number of additional constraints, they just need unique names.
121 Returns
122 -------
123 iris.cube.CubeList
125 Raises
126 ------
127 ValueError
128 The constraints don't produce a single cube per constraint.
129 """
130 # Ensure input is a CubeList.
131 if isinstance(cubes, iris.cube.Cube):
132 cubes = iris.cube.CubeList((cubes,))
133 if len(kwargs) < 1:
134 raise ValueError("Must have at least one constraint.")
135 # Switch to extract due to lack of instance requiriing one cube per
136 # constraint.
137 try:
138 filtered_cubes = cubes.extract(kwargs.values())
139 except iris.exceptions.ConstraintMismatchError as err:
140 raise ValueError("The constraints don't produce a cube or cubelist.") from err
141 if len(filtered_cubes) == 0:
142 raise ValueError("No cubes loaded. Please check your constraints.")
143 return filtered_cubes
146def generate_mask(
147 mask_field: iris.cube.Cube | iris.cube.CubeList,
148 condition: str,
149 value: float,
150) -> iris.cube.Cube | iris.cube.CubeList:
151 """Generate a mask to remove data not meeting conditions.
153 Parameters
154 ----------
155 mask_field: iris.cube.Cube | iris.cube.CubeList
156 The field(s) to be used for creating the mask.
157 condition: str
158 The type of condition applied, six available options:
159 'eq','ne','lt','le','gt', and 'ge'. The condition is consistent
160 regardless of whether mask_field is a cube or CubeList.
161 The conditions are as follows
162 eq: equal to,
163 ne: not equal to,
164 lt: less than,
165 le: less than or equal to,
166 gt: greater than,
167 ge: greater than or equal to.
168 value: float
169 The value on the right hand side of the condition. The value is
170 consistent regardless of whether mask_field is a cube or CubeList.
172 Returns
173 -------
174 mask: iris.cube.Cube | iris.cube.CubeList
175 Mask(s) meeting the condition applied.
177 Raises
178 ------
179 ValueError: Unexpected value for condition. Expected eq, ne, gt, ge, lt, le.
180 Got {condition}.
181 Raised when condition is not supported.
183 Notes
184 -----
185 The mask is created in the opposite sense to numpy.ma.masked_arrays. This
186 method was chosen to allow easy combination of masks together outside of
187 this function using misc.addition or misc.multiplication depending on
188 applicability. The combinations can be of any fields such as orography >
189 500 m, and humidity == 100 %.
191 The conversion to a masked array occurs in the apply_mask routine, which
192 should happen after all relevant masks have been combined.
194 Examples
195 --------
196 >>> land_mask = generate_mask(land_sea_mask,'gt',1)
197 """
198 mask_list = iris.cube.CubeList([])
199 for cube in iter_maybe(mask_field):
200 mask = cube.copy()
201 mask.data[:] = 0.0
202 match condition:
203 case "eq":
204 mask.data[cube.data == value] = 1
205 case "ne":
206 mask.data[cube.data != value] = 1
207 case "gt":
208 mask.data[cube.data > value] = 1
209 case "ge":
210 mask.data[cube.data >= value] = 1
211 case "lt":
212 mask.data[cube.data < value] = 1
213 case "le":
214 mask.data[cube.data <= value] = 1
215 case _:
216 raise ValueError("""Unexpected value for condition. Expected eq, ne,
217 gt, ge, lt, le. Got {condition}.""")
218 mask.attributes["mask"] = f"mask_for_{cube.name()}_{condition}_{value}"
219 mask.rename(f"mask_for_{cube.name()}_{condition}_{value}")
220 mask.units = "1"
221 mask_list.append(mask)
223 if len(mask_list) == 1:
224 return mask_list[0]
225 else:
226 return mask_list